Some useful primitives
Multiplexor (ala "mux")
2 single-bif inputs D_{0}, D_{1}
1 "selector" S
1 output Q
controller determines which input bit $\rightarrow Q$ $\Rightarrow 2$ inputs $\therefore=1$ bit (2 "states' $)$
so $Q=\bar{S} D_{0}+S D_{1}$

primitive:

it inputs are 2 bits each, then Q is also 2 bits but S is still 1-bit \Rightarrow just use 1-bit max for each bit of Q
$D_{0} \phi D_{0} A D_{1} \phi D_{1} 1 S$

4- bit mux $D_{0}, D_{1}, D_{2}, D_{3}$
Q is just 1 -bit
S has to have 4 states to differentiate which input is switched to Q so $S[1: 0]$ truth table

S_{1}	S_{0}	Q
0	0	D_{0}
0	1	D_{1}
1	0	D_{2}
1	1	D_{3}

so $Q=D_{0} \bar{S}_{0} \bar{S}_{1}+D_{1} S_{0} \bar{S}_{1}+D_{2} \bar{S}_{0} S_{1}+D_{3} S_{0} S_{1}$

Demux \rightarrow opposite of mex: $D \rightarrow Q_{0}$ in Q_{1} depending
 in S

$$
\begin{aligned}
& Q_{0}=D \bar{S} \\
& Q_{1}=D S
\end{aligned}
$$

Decodes:
any binary \# can be encoded ufo a bus ex: 3 encodes to 11 for 2 bit bus $D[1: 0]$ $\Rightarrow D[1: 0]$ has 4 states construct 4 outputs $Q_{0}, Q_{1}, Q_{2} Q_{3}$ suet that each output is "asserted" (is 1) depending on what number is encoded

$D 1$	$D \phi$	Q_{0}	Q_{1}	Q_{2}	Q_{3}
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	0	
1	0	1	0		
1	1	0	0	0	1

$$
\begin{aligned}
& Q_{0}=\overline{D \phi} \overline{D I} \\
& Q_{1}=D \phi \overline{D I} \\
& Q_{2}=\overline{D 6} D \\
& Q_{3}=D \phi D 1
\end{aligned}
$$

note: this is egcivalecut to using 4 -bit demur with a constant input 1

Comparitr: test on 2 signals A, B can be $A=B, A<B, A>B, A \neq B$

$A B$	$A=B$	$A \neq B$	$A>B$	$A<B$
00	1	0	0	0
01	0	1	0	1
10	0	1	1	0
11	1	0	0	0

$A=B: Q \equiv \bar{A} \bar{B}+A B=\overline{A \oplus B}$
$A \neq B: Q_{i}=A \oplus B$
$A \supset B: Q_{3}=A \bar{B}$
$A \angle B: Q_{c}=\bar{A} B$

$$
Q=Q=+Q_{7}+Q_{s}+Q_{2}
$$

4 possible comb of $A, \therefore, \therefore 4$ outputs that are mutually exclusive

So far we have learned about "sequential logic" \Rightarrow inputs flow thru some sequence δ gates
note: the outputs follow inputs at all times what seq logic lacks?
l. ability to specify the time for things fo happen
2. ". "ememble anything (memory)
memory \Rightarrow condoled feedback.
fling this circuit

Hard to tell what this will do!
\Rightarrow Specify initial states of $R \leq S$, see how evolves

$$
S=1, R=0
$$

$S=1$ means gate b will give ϕ on output due to ouput

$$
\Rightarrow P=0
$$

$R=0$ and red input $=0$ means gate a will be 11
$\Rightarrow Q=1$

R	S	Q	P	state
0	1	1	0	"Set" SR

what happens when $S \rightarrow 0$ here?
\Rightarrow nothing b / c gate a is an or $\dot{\varepsilon}$ the other input $=1$
\Rightarrow remembers!

next transition from $\bar{S} \bar{R}$ to $\bar{S} R$ (asserting R) this changes output if gate a to $O(Q=0)$ but since $S=1$, gate b doesn't change

$R \rightarrow 1$ turns off gate a (NOR), and $s=0$ so gate b turns on
this changes outputs from "set" $(Q P=10)$ b

$$
\text { "nose" }(Q P=01)
$$

$$
\begin{array}{lllll}
R & S & Q & P & \text { state } \\
\hline 0 & 1 & 1 & 0 & \text { "set" } S \bar{R} \\
0 & \downarrow & 1 & 0 & \text { "hold" } \\
0 & \bar{R} \\
\downarrow & 1 & & \\
1 & 0 & 0 & 1 & \text { "reset" } \\
1 S
\end{array}
$$

if you now transition $S \rightarrow 1$ (RS state)
then gate $b \rightarrow 0, P \rightarrow 0$
but since $R=1$ already, no change in $Q=0$

ES | | R | S | Q | P |
| :--- | :--- | :--- | :--- | :--- |
| state | | | | |
| 0 | 1 | 1 | 0 | "set" |

ES $0 \stackrel{\downarrow}{\mathcal{O}} 100$ "hold"
RSi $\downarrow_{1} 00$
RS $1 \stackrel{1}{1} 000 \quad P \neq \bar{Q}$
this is called SR "latch"
wriks great for some things al though $P \neq \bar{Q}$ is maybe a problem
primitive $=\begin{array}{ll}S & Q \\ B & P\end{array}=$ or $=\begin{array}{ll}S & Q \\ A & Q\end{array}$ since $P=\mathbb{Q}$ (mostly)

Another way to make RS latch that is more well behaved:

here $P=\bar{Q}$ explicitly, so outputs will never be equal Set $S \bar{R} \Rightarrow a=1, b=1, Q=1, \bar{Q}=0$ "set" $S \bar{R} \rightarrow \bar{S} \bar{R}$ doesn't change Q b/c a is OR "hold" $\bar{S} \bar{R} \rightarrow \bar{S} R$ turns of $b, Q \rightarrow 0$ "reset"

2	S	Q
0	1	set
1	X	hold
0	0	reset

